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Fundamental Limits of Invisible Flow Fingerprinting
Ramin Soltani , Dennis Goeckel , Fellow, IEEE, Don Towsley , and Amir Houmansadr

Abstract— Network flow fingerprinting can be used to
de-anonymize communications on anonymity systems such as
Tor by linking the ingress and egress segments of anonymized
connections. Assume Alice and Bob have access to the input
and the output links of an anonymous network, respectively, and
they wish to collaboratively reveal the connections between the
input and the output links without being detected by Willie who
protects the network. Alice generates a codebook where each
codeword is a unique fingerprint indicating a sequence of inter-
packet delays, and shares it only with Bob. To trace each flow,
Alice selects a fingerprint and manipulates the packet timings of
the flow to follow the packet timings suggested by the fingerprint,
and Bob extracts the fingerprints from it after it passes through
the network. We model the network as parallel M/M/1 queues
where each queue is shared by a flow fi from Alice to Bob
and other flows independent of fi . Packet timings of the flows
are governed by independent Poisson processes. Assuming all
input flows have equal packet rates and that Bob observes only
flows with fingerprints, we first present two scenarios: 1) Alice
fingerprints all the flows and 2) Alice fingerprints a subset of the
flows, unknown to Willie. Then, we extend the construction and
analysis to the case of arbitrary flow rates and the case where Bob
observes flows with and without fingerprints. For each scenario,
we derive the number of flows that Alice and Bob can trace by
fingerprinting.

Index Terms— Covert communication, packet switching, net-
work security, covert packet insertion, covert packet communica-
tion, covert wired communication, covert channel, low probability
of detection, information theory.

I. INTRODUCTION

G IVEN the presence of communication systems in daily
life and their rapid growth, e.g., cellular networks,

internet of things, etc., security and privacy has emerged as
a vital area of research and development [2]–[6]. For every
communication system, security involves not only allowing
authorized users to communicate a message in a way that
the message content is protected from unauthorized users, but
also preventing access by malicious users. Hence, breaking
the anonymity of users in an anonymous network such as
Tor, Bitblinder, and Darknet plays a major role in preventing
malicious use of technology.
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Even if the messages are encrypted, traffic analysis can
be used to infer sensitive information from the packet
characteristics such as timing patterns, sizes, and packet rates.
For instance, packet timings can reveal information about
passwords sent over SSH channels [7]. Also, traffic analysis
can discover stepping stone attacks where malicious users
employ compromised computers to relay their traffic [8], [9].
Furthermore, it can be used to find correlations between input
and output links of a network to reveal connections between
the links [10].

Unlike passive traffic analysis which involves only recording
traffic characteristics, such as packet timings, active traf-
fic analysis involves both recording and modifying traffic
characteristics to embed information in them. For instance,
in flow watermarking [11]–[13], watermarks are embedded
into flows by changing their packet timings according to a
unique secret pattern. Therefore, each flow contains one bit
of information indicating whether it contains the watermark.
However, in flow fingerprinting, the embedded patters are used
to communicate information such as the identity of the party
that performed fingerprinting [14], the location of the flow
in the network where it was fingerprinted [1], and the time
when the fingerprint was embedded. Thus necessarily this will
convey more than one bit of information.

Active traffic analysis has emerged as a vibrant area of
research recently. In [15], the authors propose detecting step-
ping stones using flow watermarking. Peng et al. [16] show
that this method is detectable and propose attacks on it.
Wang et al. [17] show that the anonymity of VoIP calls made
over an anonymity network can be broken using watermarking
methods. Kiyavash et al. [18] propose a multi-flow attack
on interval-based watermarking methods, which delay packets
of specific intervals based on the value of the watermarks.
Houmansadr and Borisov propose RAINBOW watermark-
ing [11] and SWIRL [12] which is a scalable traffic analysis
method resilient against aggregated-flows attacks. They also
study the capacity of flow watermarking [19] and propose
a flow fingerprinting scheme allowing fingerprinting of mil-
lions of flows by perturbing the packet timings of relatively
short lengths of flows [20]. Rezaei and Houmansadr [21]
introduce an active fingerprinting method called TagIt that
works by slightly delaying packets into secret time inter-
vals. Wang [22], Yu [23] consider watermarking and analyze
invisibility and error probability of watermarking schemes in
practice.

Previous active traffic analysis methods do not offer theoret-
ical guarantees on the trade-off between performance (number
of the flows) and invisibility, i.e., altering the packet timings so
that the outcome is statistically indistinguishable from intact
packet timings. When the traffic analyzer is the warden of
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Fig. 1. Alice may fingerprint the flows, and Bob receives the fingerprinted
flow after they pass through the network which adds timing noise to the
fingerprints. Willie who is warden of the network protects the links from
being traced; he wishes to determine whether Alice has fingerprinted flows.
(a) Setting 1: The network is modeled as independent parallel M/M/1
queues where each queue is shared between a flow from Alice to Bob
(main flow) and other interfering flows that are independent of the main
flow. (b) Setting 2: The network is modeled as independent parallel M/M/1
queues with single input/output where each queue conveys a flow from Alice
to Bob.

the network who protects the links from being traced by
anonymous users (e.g., for de-anonymization), invisibility of
traffic analysis is important since attackers (anonymous users)
can evade analysis if they are aware of the fingerprinting
process. Even when the traffic analyzer is not the network
warden, the invisibility of the traffic analysis is crucial in order
to hide from the network warden. In this paper, we consider
invisible fingerprinting to trace the input and output links of
a network in the presence of a network warden. Consider
an anonymous network where connections between input and
output links are unknown. We model the network as M parallel
work conserving queues with Poisson arrivals and exponential
service times (M/M/1 queues) and First In First Out (FIFO)
discipline. Queues are independent and each queue is shared
by a flow from the input of a network to the output of the
network and other flows independent of the flow from Alice
to Bob (see Fig. 1a). Alice has access to the input flows
and she can buffer and release packets when she desires.
On the other side of the network, Bob has access to the
output flows so he can read the packet timings of the flows.
Alice and Bob wish to perform fingerprinting to infer the
connections between input links and output links, without
being detected by Willie whose goal is to discover flow
fingerprints.

We consider the following problem: in a time interval of
length T , can Alice and Bob perform fingerprinting to link
input and output flows of the network without being detected
by Willie, and if yes, how can they do so and what is the

maximum number m of flows that they can link reliably? For
the case where packet timings of each flow is an independent
instantiation of a Poisson process, we present the construction
and analysis, and calculate the asymptotic expression for m
as a function of T . We first assume flow packet rates are
equal and that Bob observes only flows with fingerprints and
consider two main scenarios: 1) Alice fingerprints all flows she
observes; 2) Alice fingerprints a subset of the flows, and the
subset is unknown to Willie. Then, we present the extensions
to arbitrary flow rates as well as the case where Bob observes
a set of flows in which not all flows are fingerprinted.

The contributions of this work relative to the conference
version in [1] are:

• For the case where Alice fingerprints all flows, we present
more details of the analysis for both the reliability and
the number of possible fingerprinted flows.

• For the case where Alice fingerprints a subset of the
flows, we present a slightly different variation of [1,
Th. 2] where instead of fingerprinting each flow with
probability q , Alice fingerprints a subset of the flows
which is known to both Alice and Bob (see Theorem 2).
Furthermore, we present the results for arbitrary q and
number of flows (see Theorem 4.3).

• The extension to the case of arbitrary flow rates was
only discussed briefly in [1]. Here, we present the full
construction and analysis (see Theorems 3.1 and 3.2).

• We analyze the case where Bob observes a set of flows
in which some of them are not fingerprinted. We present
a construction where Bob uses a detector to determine if
a flow is fingerprinted (see Theorems 4.1 and 4.2).

• We present simulation results for Willie’s probability of
error, the probability that Alice runs out of packets, Bob’s
probability of error, and robustness of our scheme against
changes in processing time of queues.

The remainder of the paper is organized as follows.
We present the system model, definitions, and invisibility and
reliability metrics employed in this paper in Section II. Then,
in Sections III and IV, we present constructions and analyses
for the two main fingerprinting scenarios. In Section V,
we present the extensions of the main scenarios to arbitrary
flow rates, and in Section VI, we present the extensions of
the main scenarios to the case where Bob observes flows
with and without fingerprints. Section VIII discusses the
results, and Section IX discusses future work. We conclude in
Section X.

II. SYSTEM MODEL, DEFINITIONS, AND METRICS

A. System Model

We consider a set of M flows between M pairs of input
and output links. We assume the links are known but not
the pairings. Also present are two parties Alice and Bob
whose goal is to identify some or all of the pairings by
fingerprinting, without a third party, Willie, detecting this
identification. Moreover, Alice and Bob wish to do so within
the time interval [0, T ]. Alice, Bob, and Willie know that all
packet timings are governed by Poisson processes and they
the rate of each flow that they observe.
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Alice has access to a subset of the input links where
each link conveys a packet flow f (A)

i ∈ FA = { f (A)
1 ,

f (A)
2 , . . . , f (A)

M }. She is allowed to buffer packets and release
them from her buffer but no other operations (e.g., inserting
packets, changing packet ordering). Willie is located between
Alice and the network, and he watchfully observes all of
the input links accessed by Alice (FA) to detect whether
or not Alice is fingerprinting flows (see Fig. 1). Willie is
able to verify the sources and the order of the packets.
Therefore, if Alice inserts a packet of her own or re-orders
the packets on any of the links to transmit information to
Bob, Willie will detect her immediately. Bob observes a subset
of the output links where each link conveys a packet flow
f (B)

j ∈ FB = { f (B)
1 , f (B)

2 , . . . , f (B)
Mb

}. He is only allowed to
observe the time of the arrival of each of the packets in each
flow. Bob and Willie cannot manipulate the flows (e.g., change
packet timings, remove packets, insert packets, change packet
ordering).

Prior to fingerprinting, Alice generates a codebook of fin-
gerprints and shares it with Bob. The codebook is secret, and
thus Willie does not have access to it. On the other side of
the network, Bob uses the codebook to extract the fingerprints
and identify the flows.

Each fingerprint (codeword) of the codebook corresponds
to a sequence of inter-packet delays, which plays the role of
a unique flow identifier. Alice embeds a unique fingerprint in
each flow, i.e., she buffers packets of each flow and releases
them according to timings associated with a fingerprint.
We denote by F f ⊂ FA the set of flows with fingerprints.
In general, not every fingerprinted flow is observed by Bob.
However, since our goal is to calculate the maximum number
of flows that can be traced by Alice and Bob, we assume Bob
observes all fingerprinted flows, i.e., F f ⊂ FB .

As Willie is only able to read the channel, he cannot change
packet timings; however, packet timings change after they pass
through the network. Nevertheless, we present a construction
where Bob can successfully identify the flows.

We model the network as M parallel First In First
Out (FIFO) queues with exponential service times (M/M/1
queues). We consider two settings for the network:

1) Setting 1: each M/M/1 queue is shared by the flow
Alice and Bob are monitoring, which we refer to it as
“main flow”, and other flows independent of the main
flow, which we refer to them as “interfering flows”. (see
Fig. 1a).

2) Setting 2: each M/M/1 queue conveys just the flow
Alice and Bob are monitoring (see Fig. 1b).

Denote by qi the i th queue, and by μi , λi , and λ′
i the service

rate, the input rate, and the sum of the rates of the interfering
flows at qi , respectively. We term μ′

i = μi − λ′
i the effective

service rate [24] of qi and we assume Alice knows the effective
service time of all queues q1, . . . , qM . The queues are stable,
i.e., λi + λ′

i < μi .
First, we consider Setting 1 (shown in Fig. 1a). Assuming

the flow rates of the flows observed by Alice and Bob
are the same (λi = λ) and that Bob observes only the
set of fingerprinted flows (FB = F f ), we present two
scenarios:

• Scenario 1 (analyzed in Section III): Alice fingerprints all
flows to which she has access (F f = FA).

• Scenario 2 (analyzed in Section IV): Alice fingerprints a
subset of the flows to which she has access (F f ⊂ FA).

Then, considering the same setting for the network (Set-
ting 1 shown in Fig. 1a), we present Scenarios 3 and 4 which
are extensions of Scenarios 1 and 2, respectively, to the case
that flow rates are arbitrary. Scenarios 3 and 4 are analyzed
in Sections V-A and V-B, respectively. Next, we consider
Setting 2 (shown in Fig. 1b) and present Scenarios 5 and 6,
which are extensions of Scenarios 1 and 2, respectively, to the
case that Bob observes fingerprinted flows as well as other
flows that are not fingerprinted (F f ⊂ FB). If Bob observes
a flow f (B)

i that is not fingerprinted, the flow can be either
coming from Alice ( f (B)

i ∈ FA) or other inputs of the
network ( f (B)

i /∈ FA). Scenarios 5 and 6 are analyzed in
Sections VI-A and VI-B, respectively. We show that in each
scenario Alice can fingerprint the flows invisible to Willie but
distinguishable by Bob. In addition, we determine the number
of flows that Alice and Bob can invisibly and reliably trace
by fingerprinting.

Next, we present definitions and describe invisibility and
reliability metrics.

B. Definitions

Willie uses hypothesis testing to detect whether Alice is
fingerprinting:

• H0: Alice is not fingerprinting.
• H1: Alice is fingerprinting.

Denote PFA as the false alarm probability of rejecting H0
when Alice is not fingerprinting (type I error), and PMD
as the missed detection probability of rejecting H1 when
Alice is fingerprinting (type II error). To give more power
to Willie, we assume he knows the probability that Alice is
fingerprinting, P(H1) = 1 − P(H0).

Similar to the definition of covertness [25]–[29], we define
invisibility [1]:

Definition 1 (Invisibility): Alice’s fingerprinting is invisible
(covert) if and only if she can lower bound Willie’s probability
of error, P

(w)
e = PFA+PMD

2 , by 1
2 −ε for any ε > 0, as T → ∞.

We term ε the invisibility parameter.
Definition 2 (Reliability): Alice’s fingerprinting is reliable

if and only if for any ζ > 0 and any flow, the probability of
the failure event satisfies Pf ≤ ζ as T → ∞. We term ζ the
reliability parameter. For a flow with a fingerprint the failure
event occurs when one of the following events occurs:

• Alice cannot successfully fingerprint the flow since she
does not have a packet available to release when she
needs one. We denote by Pf1 the probability of this event.

• Bob cannot extract the fingerprint successfully. We denote
by Pf2 the probability of this event.

For a flow without a fingerprint, the failure event occurs when
Bob detects a fingerprint. We denote by Pf3 the probability of
this event.

Note that both Pf3 and PFA refer to the (erroneous) detection
of fingerprints when flows are not fingerprinted; however,
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Fig. 2. An example of when Alice cannot successfully fingerprint a flow: the
packet timings of the flow received by Alice and the packet timings suggested
by the selected fingerprint are [10μs, 2μs . . .] and [5μs, 3μs, . . .], respec-
tively. Alice faces a causality problem when she needs to send the second
packet since she has to send it before she receives it.

the former refers to detection by Willie after observing all
the flows, and the latter refers to detection by Bob for each
flow.

Definition 3 (Lambert-W Function): The Lambert-W func-
tion is the inverse function of f (W ) = WeW .

We present results under the assumption that P(H0) =
P(H1) = 1/2. We show in Appendix A that this results
in invisibility for the general case where P(H0) �= P(H1).
In this paper, we use standard Big-O, Little-o, Big-Omega,
little-omega, and Big-Theta notations [30, Ch. 3].

III. SCENARIO 1: ALL FLOWS ARE

FINGERPRINTED, SETTING 1

Consider Scenario 1: Alice fingerprints all flows she
observes (F f = FA), and Bob observes only the fingerprinted
flows (FB = F f ). All of flow rates are equal (λi = λ).
We consider Setting 1 (see Fig. 1a), i.e., M parallel M/M/1
queues where each queue is shared by a fingerprinted flow and
other interfering flows independent of the fingerprinted flow.
Alice fingerprints the input flows during time interval [0, T ],
and Bob extracts the fingerprints from the flows on the output
links of the network to infer the connections between input
and output flows.

Alice buffers packets and releases them according to a
fingerprint. She uses a secret codebook where each code-
word (fingerprint) is a unique flow identifier consisting of
a sequence of inter-packet delays. Because the timings of
packets that Alice receives as well as the codewords are
random, Alice will face a causality problem: the need to send
a packet before she receives it. We give an example of when
Alice cannot successfully fingerprint a flow in Fig. 2.

Consider a flow and assume the inter-arrival times of this
flow before Alice makes any changes are [10μs, 2μs . . .]. Also
assume Alice selects a fingerprint C(W ) = [5μs, 3μs, . . .]
from her codebook. Note that the inter-arrival time between

Fig. 3. Alice’s divides the time interval of length T into two phases: a
buffering phase of length T1 where packets of each flow are slowed down,
and a fingerprinting phase of length T2 = T − T1 where Alice fingerprints
the flows.

the first and second packets of the flow is 10μs but Alice
has to alter the packet timings of the flow to achieve an
inter-arrival of 5μs between the first and the second packets.
In other words, she has to send the second packet before she
receives it.

To account for this, prior to fingerprinting, Alice invisibly
slows down the flow in order to buffer packets [26, Sec. IV].
This ensures she will have a packet in her buffer to transmit at
the appropriate times and can fingerprint the flow successfully.

We calculate the number of flows m = M that Alice and
Bob can trace by fingerprinting using this scheme, asymptot-
ically as a function of T .

Theorem 1: Consider Setting 1 (see Fig. 1a). If Alice fin-
gerprints all M input flows (F f = FA) whose rates are equal
(λ) and Bob only observes fingerprinted flows (FB = F f ),
then Alice and Bob can invisibly and reliably trace m = M =
O(T/ log T ) flows in a time interval of length T .

Proof: Construction: Per above, Alice uses a scheme
consisting of two phases of lengths T1 and T2, and employs a
codebook of fingerprints to embed in the flows. The codebook
construction is similar to the one adopted in [1], [26], and [27].
In particular, Alice generates m independent instantiations
of a Poisson process with parameter λT2, where T2 is the
length of the second phase, as follows. To generate the l th

codeword (1 ≤ l ≤ m), first a number nl is generated
according to a Poisson distribution with mean λT2, and then
nl points are distributed randomly and uniformly in a time
interval of length T2 [31] (see Fig. 4). Therefore, the codebook
contains m fingerprints (codewords) {C(Wl)}l=m

l=1 . Alice selects
a fingerprint for each flow and applies the inter-packet delays
of the chosen fingerprint to the packets of the flow. The
codebook is shared with Bob, not know to Willie.

Alice divides the time interval of length T into two phases
(see Fig. 3):

• Phase 1 (buffering phase) of length T1: Alice slows each
flow from rate λ to rate λ−� to buffer packets, i.e., if she
receives a packet at time τ , she transmits it at time τλ

λ−� .
This allows her to build up a backlog of packets in her
buffer which ensures that she will be able to fingerprint
each flow during the next phase successfully.

• Phase 2 (fingerprinting phase) of length T2 = T − T1: for
each flow, she selects a fingerprint from her codebook
and then alters the packet timings of the flow according
to the selected fingerprint.

The lengths of the two phases are,

T1 = T mα

1 + mα
, (1)

T2 = T − T1 = T

1 + mα
, (2)
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Fig. 4. Codebook generation: Alice generates a codebook whose codewords
(fingerprints) specify the sequence of inter-packet delays to be embedded in
the flows. Each codeword is an instantiation of a Poisson process of rate
λmin = min(λ1, . . . , λm) in a time interval of length T2. For each codeword,
first a random variable N is generated according to the Poisson distribution
with parameter λT2. Then N points are placed uniformly and randomly in
the time interval of length T2. The codebook is shared with Bob, but it is
unknown to Willie.

where α is a constant defined later, and m is the number of
flows to be fingerprinted.

Analysis (Invisibility): Similar to the analysis of covertness
in [26, Th. 2], we can show that Alice’s fingerprinting is
invisible. Consider the first phase. We can show that for all
ε ∈ (0, 1

2 ), Alice can slow down the flows from rate λ to rate
λ − ε

√
2λ/mT1, and achieve (see the proof in Appendix B)

P
(w)
e >

1

2
− ε, (3)

where Pe is Willie’s error probability. Thus, her buffering is
invisible. In the second phase, the packet timings for each
flow is an instantiation of a Poisson process with rate λ and
hence the traffic pattern is indistinguishable from the pattern
that Willie expects to observe. Hence, the scheme is invisible.

(Reliability) Now, we show that Alice’s fingerprinting sat-
isfies all of the conditions in Definition 2, and thus is reliable.
Note that all flows have fingerprints. By the union bound:

P f ≤ Pf1 + Pf2 . (4)

Thus, to show the fingerprinting is reliable, it suffices to show
that Pf1 + Pf2 ≤ ζ for all ζ > 0.

First, we show that Pf2 → 0 as T → ∞ for each flow,
i.e., Bob can successfully extract a fingerprint from each flow.
Recall that Alice fingerprints all m flows that she observes and
Bob observes only the flows fingerprinted by Alice (FA =
F f = FB). Therefore, m = |FA| = |F f | = |FB |, where | · |
denotes the cardinality of a set.

Without loss of generality, we assume that flow f (B)
i passes

through the i th queue (qi ). Denote by Ci the capacity of qi for
the transmission of information via packet timings. Recall that
qi is an M/M/1 queue with multiple inputs and outputs and
that Alice establishes a timing channel on each input flow to
send a fingerprint to Bob. Recall that qi is an M/M/1 queue
with multiple inputs and outputs and that Alice establishes
a timing channel on each input flow to send a fingerprint to
Bob. Therefore, we use the bound on the capacity of the timing
channel for a shared M/M/1 queue [24, Proposition 1]:

Ci ≥ λ log
(
(μi − λ′

i )/λ
)
, (5)

where λ′
i is the sum of rates of the interfering flows passing

through qi , and μi is the service rate of qi . Note that (5)

implies that although qi changes the packet timings of the flow
and thus the embedded fingerprint, Bob is able to successfully
decode at least Ci nats/second bits from the packet timings
of the flow and thus extract Alice’s fingerprint. From [31,
Definition 1], the rate of the codebook is log m

T2
, and [31,

Definition 2], (5) implies that all transmission rates smaller
than λ log

(
(μi − λ′

i )/λ
)

result in a decoding error probability
that tends to zero as T2 → ∞. Therefore, we require

log m

T2
< λ log

(
(μi − λ′

i )/λ
)

(6)

for Bob to successfully extract the fingerprint from f (B)
i . Note

that (6) holds for all 1 ≤ i ≤ m. Hence, as long as

log m

T2
< C, (7)

where

C = λ log

(
min

i
{μi − λ′

i }/λ
)

, (8)

for each flow Pf2 → 0 as T2 → ∞. Note that (2) implies
that T1, T2 → ∞ as T → ∞. Therefore,

Pf2 → 0 as T → ∞. (9)

Next, we show that Pf1 ≤ ζ , i.e., Alice can successfully fin-
gerprint the flows. Recall that Alice accounts for the causality
problem by buffering packets before she starts fingerprinting.
Since in the first phase Alice slows down the packet rate from
rate λ to rate λ − ε

√
2λ/mT1, on average she can buffer

ε
√

2λT1/m packets. Consequently, we can apply the weak
law of large numbers (WLLN) to show that the probability
that Alice buffers more than ε

√
λT1/m packets tends to one,

as T tends to infinity. Now, we have to answer this question:
noting that Alice has ε

√
λT1/m packets in her buffer, what is

the probability that Alice cannot successfully fingerprint f (A)
i ?

Because Alice receives and transmits packets on each flow
according to two independent Poisson processes of rate λ,
and the Poisson process is memoryless, we model the process
as a symmetric random walk on a 1-D grid to answer this
question [26]. The location of the walker corresponds to the
number of packets in Alice’s buffer. The walker goes from
location z to z+1 when Alice receives a packet, and goes from
location z to z − 1 when Alice transmits a packet. Denote by
Pk,t the probability of the event that the walker starting from
the location z = k reaches the point z = 0, at least once,
during the time [0, t]. Then [26, Eq. (27)]:

lim
t→∞ Pk,t ≤ 1 − lim

t→∞ erf

(
k√
8λt

)
. (10)

Since Alice fingerprints the flows in the second phase,
t = T2. Recall that the probability that Alice buffers more
than ε

√
λT1/m packets tends to one, as T → ∞. Therefore,

we let k = ε
√

λT1/m. By (10), the probability that Alice runs
out of packets for flow f (A)

i satisfies:

lim
T →∞ Pf1 ≤ 1 − lim

T →∞ erf

(
ε

2

√
T1

2 mT2

)
= 1 − erf

(
ε

√
α

8

)
.

(11)
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where the equality holds since T1/T2 = mα following from (1)
and (2). Note that (11) is independent of i (index of the flow),
and holds for all flows f (A)

i , 1 ≤ i ≤ m. Let

α = (8/ε2)(erf−1(1 − ζ ))2. (12)

By (12), (11) yields

Pf1 ≤ ζ as T → ∞. (13)

Consequently, by (4), (9), (13), P f ≤ ζ for all ζ > 0, when
T → ∞ and thus Alice and Bob’s fingerprinting is reliable.

(Number of flows) By (7) and (2), we require

log m

T2
= (1 + mα) log m

T
< C. (14)

as T2 → ∞ (T → ∞). In Appendix C we show that we can
achieve (14) as long as

m = 1

2
min

{
α−1

(
T C

W (T C)
− 1

)
,

T C

W (T C)

}
, (15)

where W (·) is the Lambert-W function. Since for T > e,
W (T ) ≤ ln(T ), Alice and Bob can invisibly and reliably pair
the end points of every flow, and thus break the anonymity of
a network (Setting 1 shown in Fig. 1a) with m = O(T/ log T )
flows.

IV. SCENARIO 2: ALICE FINGERPRINT A SUBSET

OF THE FLOWS, SETTING 1

In Scenario 1, Willie is certain that if H1 is true, i.e., Alice
fingerprints, then all flows are slowed down in the first phase.
In Scenario 2, we add uncertainty to Willie’s knowledge under
H1: Alice fingerprints a subset F f of the flows, and F f is
unknown to Willie. Therefore, Willie has to investigate a large
set of flows to detect if some are slowed down in the first
phase as required for fingerprinting. We show that Willie’s
uncertainty allows Alice to fingerprint more flows without
being visible.

Alice fingerprints a subset of the flows she observes
(F f ⊂ FA). For each flow, she selects a unique finger-
print from her codebook and alters the timings of that flow
according it. Similar to Scenario 1, Alice has T units of
time which she divides into two phases: a buffering phase of
length T1, which ensures Alice can successfully fingerprint,
and a fingerprinting phase of length T2 = T − T1. Bob, who
has access to the fingerprint codebook and observes the set
of fingerprinted flows (FB = F f ), extracts the fingerprints
from the flows. The fingerprint codebook is secret and Willie
does not have access to it. The network is modeled by M
parallel M/M/1 queues with each queue shared by a flow from
Alice to Bob (main flow) as well as other interfering flows
independent of the main flow (Setting 1 shown in Fig. 1a).
We calculate the number of flows (m) that Alice can fingerprint
using this scheme, asymptotically as a function of T .

Theorem 2: Consider Setting 1 (see Fig. 1a). In a set FA

containing M flows with equal rates (λ), if Bob observes only
the fingerprinted flows (FB = F f ), Alice and Bob can invisibly

and reliably trace m flows in a time interval of length T , where

m =

⎧⎪⎨
⎪⎩

M, M = O(1)

o(min{√M, eT C1}), M = ω(1) & M = O(e2T C )

	(eT C2), M = ω(e2T C )

(16)

C is given in (8), and C1, C2 ∈ (0, C) are arbitrary constants.
A more accurate characterization of m with respect to M is

presented in (26) in the proof below.
Proof: Construction: The construction is similar to that

of Scenario 1 except that Alice fingerprints a subset of the
flows that she observes. Recall that all of flows observed by
Bob are also observed by Alice (FB ⊂ FA). Alice knows
which set of her flows will be observed by Bob, and chooses
them for fingerprinting (F f = FB). Note that Willie does not
know which subset of FA is FB . Alice generates a codebook
of m fingerprints (similar to Scenario 1) and shares it with
Bob prior to fingerprinting, where m is given in (16). Recall
that we calculate the maximum number of flows that Alice and
Bob can trace; therefore, we only consider the case |FB| = m
which can be extended to |FB | ≤ m trivially.

Alice’s scheme consists of two phases, a buffering phase of
length T1, and a fingerprinting phase of length T2 = T − T1,
where

T1 = T α′

ln(1 + ε2 M
2m2 ) + α′ , (17)

T2 = T − T1 = T

1 + α′/ ln(1 + ε2 M
2m2 )

, (18)

α′ = αε2. (19)

Recall that α and C are given in (12) and (8), respectively,
and ε is the invisibility parameter. Alice generates fingerprints
for her codebook analogous to Scenario 1. The number of
fingerprints in her codebook is m.

Analysis (Invisibility): For each phase, we show that all
operations Alice performs on the flows are invisible. Consider
the first phase [0, T1] where Alice slows down each flow from
rate λ to rate λ − � with

� =
√

λ

T1
ln

(
1 + ε2M

2m2

)
. (20)

From Willie’s perspective, the number packets in time [0, T1]
is a sufficient statistic to detect Alice [26]. If Alice does
not fingerprint (H0), then the joint probability density func-
tion (pdf) of Willie’s observations is P0 = ∏M

i=1 Pλ(ni ) where
Pλ(n) is the pdf of a Poisson random variable with mean λ.
Note that Willie knows that m out of M flows observed by
Alice is selected to be fingerprinted, but he does not know
which set is selected. Therefore, from Willie’s point of view,
if Alice chooses to fingerprint flows (H1), then each flow will
contain a fingerprint with probability

p = m

M
. (21)
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Thus, the joint pdfs of Willie’s observations when Alice
fingerprints (H1) is

P1 =
M∏

i=1

(pPλ−�(ni ) + (1 − p)Pλ(ni )) ,

where � is the change in flow rate. Note that the change of rate
differs from the one in Scenario 1. Suppose that Willie applies
an optimal hypothesis test to minimize his probability of error
P

(w)
e . Then, we can obtain a lower bound on his probability

of error [28, Eq. (1)s]:

P
(w)
e ≥ 1

2
−
√

1

8
D(P1||P0), (22)

where D(P1||P0) is the Kullback-Leibler divergence (relative
entropy) between P1 and P0.

Alice’s scheme is invisible as long as she can make Willie’s
detector operate as close as desired to the detector that
disregards Willie’s observations and results in P

(w)
e = 1/2

(see Definition 1). In Appendix D, we show that for ε > 0,√
1

8
D(P1||P0) ≤ ε. (23)

Thus, (22) yields P
(w)
e ≥ 1

2 − ε as T → ∞, and thus Alice’s
buffering is invisible.

The second phase is invisible because the fingerprints are
samples of Poisson processes with rate λ. Combined with
the invisibility of the first phase, Alice and Bob’s scheme is
invisible.

(Reliability) The analysis is similar to that of Scenario 1.
Since all flows observed by Bob are fingerprinted (Pf3 = 0),
to show Alice and Bob’s scheme is reliable, it suffices to show
that for each flow Pf1 + Pf2 ≤ ζ for all ζ > 0.

Similar to Scenario 1, in Appendix E we show that

Pf1 ≤ ζ as T → ∞. (24)

Now, consider Bob’s decoding error for each flow, Pf2 .
By (17) and (18), T1, T2 → ∞ as T → ∞. In order for
Bob to be able to successfully extract the fingerprint from
each flow, we require

log m

T2
< C. (25)

as T2 → ∞ (T → ∞). Substituting T2 from (18) and re-
arranging yields:

m ≤ exp

(
T C

1 + α′/ ln(1 + ε2 M
2m2 )

)
(26)

We show in Appendix F that (26) holds asymptotically as
T → ∞, given the value of m provided in (16).

Consequently,

Pf2 → 0 as T → ∞. (27)

By (4), (24), and (27), P f → 0 as T → ∞. Thus,
if M = ω(1), Alice can invisibly and reliably fingerprint
o
(

min{√M, eT C }
)

flows in a time interval of length T , and
Bob can successfully extract the fingerprints, where C is given

in (8), and if M = O(1), Alice can invisibly and reliably
fingerprint all M flows in a time interval of length T , and
Bob can successfully extract the fingerprints.

In Scenario 2, we assumed that all flows observed by Bob
are also observed by Alice and chosen for fingerprinting
(F f = FB ⊂ FA). Although this is applicable in many
schemes, we present results for the case where this assumption
is relaxed in Section VI, i.e., Bob observes flows with and
without fingerprints.

V. EXTENSION TO ARBITRARY RATES

In this section, we extend Theorems 1 and 2 to the case that
the flow rates are arbitrary.

A. Scenario 3: All Flows are Fingerprinted and Flow Rates
are Arbitrary, Setting 1

Consider Scenario 3, which is the extension of Scenario 1 to
arbitrary rates: Alice fingerprints all of the flows she observes
(F f = FA), and Bob observes only the fingerprinted flows
(FB = F f ). We consider Setting 1 (see Fig. 1a), i.e., M
parallel M/M/1 queues with multiple inputs and outputs,
where each queue is shared between a flow from Alice to
Bob (main flow) as well as other interfering flows independent
of the main flow. Here the flows rates λ1, . . . , λM can be
arbitrary, and the main flow passing through the i th queue
(qi ) has the rate of λi . Alice fingerprints the input flows of
the network in the time interval [0, T ], and Bob extracts the
fingerprints from the flows on the output links of the network
to infer the connections between input and output flows.

Similar to Scenario 1, for each flow Alice selects a code-
word (fingerprint) from her codebook and embeds it in the
flow by changing the packet timings of the flow. She builds
her codebook based on the minimum rate of the flows
λmin = min(λ1, . . . , λM ), and to embed a fingerprint (of
rate λmin) in a flow of rate λi , she scales the fingerprint by
a factor of λmin/λi to obtain a modified fingerprint of rate
λi , and then embeds it in the flow. In addition, she uses a
two-phase (buffering-fingerprinting) scheme similar to those
of Scenarios 1 and 2.

We calculate the number of flows (m = M) that Alice and
Bob can trace by fingerprinting using this scheme, asymptot-
ically as a function of T .

Theorem 3.1: Consider Setting 1 (see Fig. 1a). If Alice
fingerprints all M input flows (F f = FA) whose rates
λ1, . . . , λm are arbitrary and Bob observes only the set of
fingerprinted flows (FB = F f ), then Alice and Bob can
invisibly and reliably trace m = M = O(T/ log T ) flows in a
time interval of length T .

Proof: Construction: Per above, Alice employs a two-
phase scheme: a buffering phase of length T1 and a fingerprint-
ing phase of length T2 = T −T1 (see Fig. 3), where T1 and T2
are given in (1) and (2). The codebook construction is similar
to Scenario 1, but the rate of the fingerprints (codewords) is
λmin = min(λ1, . . . , λM ). To embed a fingerprint in a flow
of rate λi , Alice selects a fingerprint (τ1, . . . , τN ) and scales
by a factor λmin/λi to generate a modified fingerprint of rate
λi , ( λminτ1

λi
, . . . , λminτN

λi
). Since fingerprints are instantiations
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of a Poisson process of parameter λmin (i.e., its inter-arrival
times are instantiations of an exponential random variable of
mean 1/λmin), the modified fingerprint is an instantiation of
a Poisson process of parameters λi . Next, Alice applies the
inter-packet delays given by the modified fingerprint to each
flow.

Recall that Bob knows the rate of each flow. Upon observing
f (B)
i , the flow with packet timings t̄i = (t(1)

i , t(2)
i , . . . , t(N)

i )
and rate λi , Bob seeks to answer the following question:

Question 1: Given that Alice used the codebook {C(Wl)}l=m
l=1

whose fingerprints are of rate λmin, what is the index of
the fingerprint that was selected by Alice, scaled to rate
λi , and transmitted through qi to produce the output packet
timings t̄i ?

Analysis (Invisibility): Similar to Scenario 1, we analyze the
invisibility of the first and second phases separately. In the
first phase, Alice slows down each flow of rate λi to rate λi −
ε
√

2λi/mT1. Using arguments similar to that of Theorem 1,
we can show that [26, Th. 2]:

P
(w)
e >

1

2
− ε,

where P
(w)
e is Willie’s error probability. Thus, this phase is

invisible to Willie. In the second phase, since Alice embeds a
modified fingerprint of rate λi in a flow of rate λi , the traffic
pattern remains Poisson with rate λi indistinguishable from
the pattern that Willie expects to observe. Hence, the scheme
is invisible.

(Reliability) Similar to the reliability analysis in Scenario 1,
we upper bound Pf1 + Pf2 by ζ , for all ζ > 0.

Recall that upon observing f (B)
i , Bob seeks the answer to

Question 1. Note that the answer to this question is the same
as the answer to the following question:

Question 2: Given that Alice used the codebook
{C ′(Wl)}l=m

l=1 = λmin
λi

{C(Wl )}l=m
l=1 what is the index of the

fingerprint that was selected by Alice and transmitted through
qi to produce the output packet timings t̄i ?

In other words, although Alice generates a codebook whose
fingerprints are of rate λmin and then scales each fingerprint
to adjust to rate λi of the flow, Bob’s decoding of each flow
is equivalent to the case where Alice uses a codebook whose
fingerprints are of rate λi and she does not scale the finger-
prints; the only differences are in the number of fingerprints
(codewords) and the time to transmit the fingerprint, as we
will explain later. Therefore, from (6), Bob can successfully
extract the fingerprint from the flow of rate λi as long as T2
is large and

log m

T (i)
2

< λi log
(
(μi − λ′

i )/λi
)
, (28)

where T (i)
2 = T2λmin/λi is the time of the transmission of the

fingerprint embedded in the flow of rate λi . Therefore,

log m

T2
< λmin log

(
(μi − λ′

i )/λi
)
. (29)

Since the size of the codebook is m, fingerprinting the flow
fi corresponds to transmission of log m nats of information
through the inter-packet delays of the flow fi . Note that scaling

a fingerprint of rate λmin to rate λi results in transmission of
log m nats of information at a higher rate but a shorter time.

Since (29) holds for all 1 ≤ i ≤ m, we require

log m

T2
< C ′, (30)

where

C ′ = λminmin
i

{log
(
(μi − λ′

i )/λi
)}, (31)

to achieve Pf2 → 0 as T2 → ∞ for each flow. Note that (2)
implies that T1, T2 → ∞ as T → ∞. Therefore,

Pf2 → 0 as T → ∞. (32)

Now, consider Pf1 . In the second phase, on each link
Alice receives and transmits the packets according to two
independent Poisson processes of equal rate. Thus, we employ
a random walk analysis similar to that of Scenario 1 to show
that

Pf1 ≤ 1 − erf

(
ε

2

√
T1

2mT2

)
≤ ζ as T → ∞. (33)

Consequently, by (4), (32) and (33), P f ≤ ζ for all ζ > 0,
and thus Alice and Bob’s fingerprinting is reliable.

(Number of flows) The analysis is similar to that of
Scenario 1. As T → ∞, we require

log m

T2
= (1 + mα) log m

T
< C ′. (34)

which we can achieve as long as

m = 1

2
min

{
α−1

(
T C ′

W (T C ′)
− 1

)
,

T C ′

W (T C ′)

}
, (35)

Since for T > e, W (T ) ≤ ln(T ), Alice and Bob can
invisibly and reliably break the anonymity of a network
(Setting 1 shown in Fig. 1a) with m = O(T/ log T )
flows.

B. Scenario 4: Alice Fingerprints a Subset of the Flows,
Setting 1

Consider Scenario 4, which is the extension of Scenario 2 to
arbitrary rates: Alice fingerprints a subset F f of the flows, and
F f is unknown to Willie. Similar to Scenario 2, since Willie
has to investigate a large set of flows to detect if some are
slowed down in the first phase as required for fingerprinting,
Alice can make more fingerprinted flows invisible.

For each flow in F f , she selects a unique fingerprint from
her codebook and alters the timings of that flow according to
the fingerprint. We consider Setting 1 (see Fig. 1a), i.e., M
parallel M/M/1 queues with multiple inputs and outputs,
where each queue is shared between a flow from Alice to
Bob (main flow) as well as other interfering flows independent
of the main flow. Flows rates are λ1, . . . , λM , which can be
arbitrary, and the main flow passing through the i th queue
(qi ) has the rate of λi . Alice fingerprints the input flows of
the network in the time interval [0, T ], and Bob extracts the
fingerprints from the flows on the output links of the network
to infer the connections between input and output flows.
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For each selected flow Alice selects a codeword from her
codebook and embeds it in the flow by changing its packet
timings according to the selected fingerprint. Since flow rates
are arbitrary, similar to Scenario 3, she builds her codebook
based on the minimum rate of the flows to be fingerprinted
and scales each fingerprint based on the rate of the flow
to be fingerprinted. Also, she uses a two-phase (buffering-
fingerprinting) scheme.

We calculate the number of flows (m) in which Alice
fingerprints using this scheme, asymptotically as a function
of T .

Theorem 3.2: Consider Setting 1 (see Fig. 1a). In a set FA

containing M flows with rates λ1, . . . , λM , if Bob observes
only the fingerprinted flows (FB = F f ), Alice and Bob can
invisibly and reliably trace m flows in a time interval of length
T , where m is given in (16), where C is replaced with C ′ which
is given in (31).

Proof: The construction and analysis follow from
those of Scenarios 2 with modifications due to arbitrary
rates. The extension to arbitrary rates follows from that of
Scenario 3.

VI. MIXING FLOWS WITH AND

WITHOUT FINGERPRINTS

We have previously assumed that Bob only observes the set
of fingerprinted flows, i.e., FB = F f . But, in practice Bob
might observe a set of flows in which some of the flows are
not fingerprinted, and therefore, he must be able to detect if a
flow contains a fingerprint. In this Section, we consider Setting
2 (see Fig. 1b) and we present Scenarios 5 and 6 which are
extensions of Scenarios 1 and 2, respectively, to the case where
Bob observes a set of flows in which some of them are not
fingerprinted. We present a detector for Bob that is able to
detect if a flow is fingerprinted.

A. Scenario 5: All Flows are Fingerprinted and Bob
Observes Flows With and Without Fingerprints, Setting 2

Consider Scenario 5, which is the extension of Scenario 1 to
the case where Bob observes flows with and without finger-
prints (F f ⊂ FB): Alice fingerprints all of the flows she
observes (F f = FA), flow rates are equal (λ), and Bob
observes flows with and without fingerprints. We consider
Setting 2 (see Fig. 1b), i.e., M parallel M/M/1 queues with
single input and output. Alice fingerprints the input flows of
the network in the time interval [0, T ], and Bob extracts the
fingerprints from the flows on the output links of the network
to infer the connections between input and output flows.

In contrast to Scenarios 1-4, Bob uses a detector to deter-
mine if a flow is fingerprinted. We calculate the number of
flows (m) that Alice and Bob can trace by fingerprinting using
this scheme, asymptotically as a function of T .

Theorem 4.1: Consider Setting 2 (see Fig. 1b). If Alice
fingerprints all M input flows (F f = FA) whose rates are
equal (λ) and Bob observes a set of flows with and without
fingerprints (F f ⊂ FB), then Alice and Bob can invisibly and
reliably trace m = M = O(T/ log T ) flows in a time interval
of length T .

Proof: Construction: The only difference between the
construction of Scenarios 1 and 5 is that, for Scenario 5,
Bob must use a detector which detects if a flow contains a
fingerprint.

Here, Bob’s decoder is different from the maximum likeli-
hood decoder proposed in [31, p. 9], which for each codeword
calculates the service times that yield D̄i , removes the code-
words that result in negative values of service times, and finally
finds a unique codeword that corresponds to the minimum sum
of service times. Instead, Bob’s decoder selects a threshold
β = log (μi/λ), applies a function on each codeword, and
finds a unique codeword that generates an output for the
function that is larger than β.

Next, we describe Bob’s decoder in detail [32, p. 12]. For
x̄ = (x1, . . . , xn) ∈ Rn+ and ȳ = (y0, y1, . . . , yn) ∈ Rn+1+ ,
if x̄ is the sequence of packet timings before the flow passes
through qi (inter-arrival times), then the pdf of the observed
packet timings ȳ (inter-departure times) is:

P(ȳ|x̄) = eμ−λ(y0)

n∏
k=1

(yk − wk),

where eu(x) = ue−ux is the exponential pdf with mean 1/u,
and wk = max{0,

∑k
i=1 xi −∑k−1

i=0 yi } is the kth waiting time,
the amount of time that the queue waits until it receives the kth

packet. Since the packet timings of the fingerprinted flow is
an instantiation of a Poisson process of rate λ, the joint pdf of
the inter-arrival times is

∏n
k=1 eλ(xk). Consequently, the pdf

of ȳ is:

P(ȳ) =
∫

R
n+

P(ȳ|x̄)

n∏
k=1

eλ(xk)dx̄ . (36)

Bob’s decoder finds a unique fingerprint (codeword) Wl from
{Wl}l=m

l=1 that satisfies P( ȳ|Wl )
P( ȳ) > β; if such a unique codeword

does not exist, it outputs flow not fingerprinted.
Analysis: The analysis follows from that of Scenario 1. The

only differences appear in the analysis of Bob’s decoding
error probability. The auxiliary threshold decoder used in
the analysis of the mismatched decoder in [32, p. 413-417]
provides what we need for our application. If Bob uses this
detector, the decoding error probability of a fingerprinted flow
will be:

Pf2 → 0 as T → ∞, (37)

which implies that if we generate m independent instantiations
of a Poisson process of rate λ on a time interval of length T2,
W1, . . . , Wm , we select one of them Wl and send a packet
stream whose packet timings follow Wl over the network, then
the probability that at least one Wk �= Wl satisfies P( ȳ|Wl )

P( ȳ) > β
tends to zero, i.e.,

P(∃Wk �=l : P(ȳ|Wk)/P(ȳ) > β|Wl sent ) → 0 as T → ∞.

(38)

Consider the case where Bob observes a flow that is not finger-
printed. Recall that the packet timings of all the flows follow
a Poisson process of rate λ. Denote by Z� an instantiation of a
Poisson process that corresponds to the packet timings of the
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this flow before it passes through the network. If Bob detects
a fingerprint, it must be that one of the fingerprints Wl in the
codebook resulted in P( ȳ|Wl )

P( ȳ) > β. Hence,

Pf3 = P

(
∃Wk : P(ȳ|Wk)

P(ȳ)
> β

∣∣∣∣Z� sent

)
(39)

Recalling that W1, . . . , Wm and Z� are independent instan-
tiations of a Poisson process of rate λ, (37) and (38) yield
Pf3 → 0 as T → ∞. Thus, Alice and Bob’s fingerprinting is
reliable.

B. Scenario 6: Alice Fingerprints a Subset of the Flows and
Bob Observes Flows With and Without Fingerprints,
Setting 2

Consider Scenario 6, which is the extension of Scenario 2 to
the case where Bob observes flows with and without finger-
prints (F f ⊂ FB): Alice fingerprints a subset of the flows
she observes (F f ⊂ FA), flow rates are equal (λ), and Bob
observes flows with and without fingerprints. We consider
Setting 2 (see Fig. 1b), i.e., M parallel M/M/1 queues with
single input and output. Alice fingerprints the input flows of
the network in the time interval [0, T ], and Bob extracts the
fingerprints from the flows on the output links of the network
to infer the connections between input and output flows.

Similar to Scenario 5, Bob’s detector is able to distinguish
whether a flow is fingerprinted. We calculate the number of
flows (m) that Alice and Bob can trace by fingerprinting,
asymptotically as a function of T .

Theorem 4.2: Consider Setting 2 (see Fig. 1b). In a set
FA containing M flows with equal rates (λ), if Bob observes
flows with and without fingerprints (F f ⊂ FB), Alice and Bob
can invisibly and reliably trace m flows in a time interval of
length T , where m is given in (16), where C is replaced with

C ′′ = λ log

(
min

i
{μi }/λ

)
, (40)

Note that the replacement of C with C ′′ is necessary since
here we consider Setting 1 which implies that the rates of
interfering flows λ′

i are zero.
Proof: The construction and analysis follow from those

of Scenarios 2 with modifications due to the change of Bob’s
detector to detect whether a flow is fingerprinted or not.
In addition, Alice does not need to know which subset of
the flows she observes are observed by Bob to fingerprint the.
But, she chooses an arbitrary subset of flows and fingerprints
them. In general, each fingerprinted flow will not be observed
by Bob. However, since we determine the maximum number
of flows that can be traced, we assume that each fingerprinted
flow will be observed by Alice. The analysis for Bob’s detector
follows from that of Scenario 5.

In Theorem 4.2, Alice’s selection of subset might be due
to the preference of Alice and Bob. But, if there is no such
preference, Alice can choose the flows randomly and indepen-
dently to fingerprint them. Next, we present Theorem 4.3 to
address this case.

Theorem 4.3: Consider Setting 2 (see Fig. 1b). In a set
FA containing M flows, if Alice fingerprints each flow inde-
pendently with probability q, each flow has rate λ, and Bob

observes a set of flows that contains flows with and without
fingerprints (F f ⊂ FB), then Alice and Bob can invisibly and
reliably trace

m = O

⎛
⎝min

⎧⎨
⎩Mq, exp

⎛
⎝ T C

1 + α′/ ln(1 + ε2

2Mq2 )

⎞
⎠
⎫⎬
⎭
⎞
⎠ (41)

flows in a time interval of length T , where ε is the invisi-
bility parameter, and C ′′ and α′ are given in (19) and (40),
respectively.

Proof: The construction and analysis follows those of
Theorem 4.2 with modifications due to the random selection
of the flows. Alice builds a fingerprint codebook of size m,
where

m = exp

⎛
⎝ T C

1 + α′/ ln(1 + ε2

2Mq2 )

⎞
⎠ . (42)

She selects the flow f (A)
i ∈ FA to be fingerprinted with

probability q , independent of other flows. For each flow f (A)
i

she generates an independent Bernoulli random variable Xi

with P(Xi = 1) = q; she selects a unique (unused) fingerprint
from her codebook and embeds it in flow f (A)

i if and only if
Xi = 1.

Similar to the analysis of Scenario 2, we can show that for
reliable fingerprinting we require

m ≤ exp

⎛
⎝ T C

1 + α′/ ln(1 + ε2

2Mq2 )

⎞
⎠ , (43)

which is satisfied by (42). Next, we show that
Ns = ∑M

k=1 Xi = O(Mq). Consider random variables
Yi = Xi/q , i = 1, . . . , M . Since E[Yi ] = E[Xi ]/q = 1,
the weak law of large numbers (WLLN) yields
lim

T →∞ P

(
1
M

∑M
i=1 Yi > 1/2

)
= 1. Let γ = 1/2 and

Xi = qYi . Thus, lim
T →∞ P

(∑M
i=1 Xi > Mq/2

)
= 1. Since

Alice fingerprints min{m, Ns} flows, the number of flows that
Alice and Bob can invisible and reliably trace is (41).

In [1, Theorem 2], we presented values of q and M that
yield a close to a maximal number of flows that can be
traced.

VII. SIMULATION RESULTS

A. Willie’s Error Probability

First, we consider Scenario 1 and present the results of the
simulation for Willie’s detection. Then, we discuss how similar
results apply to all of the scenarios with slight modifications.

Consider Scenario 1. Recall that when H0 is true (Alice
is not fingerprinting), Willie observes flows where each flow’s
packet timing is governed by a Poisson process of rate λ. When
H1 is true (Alice is fingerprinting), the packet timing of each
flow observed by Willie is governed by a Poisson process of
rate λ−ε

√
2λ/mT1 in the first phase and a Poisson process of

rate λ in the second phase. Since the statistical properties of
the flows are the same for H0 and H1 in the second phase, he
uses the information obtained from his observations in the first
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Fig. 5. The receiver operating characteristic (ROC) curve for Willie’s detec-
tion. Alice reduces the rate of each packet stream from λ to λ−rε

√
2λ/mT1,

and we draw ROC curves for r ∈ [0.1, 9].

phase to test whether Alice is fingerprinting. Note that when
H1 is true, Willie observes m flows each of whose packet rates
is λ − ε

√
2λ/mT1 in the first phase. Similar to [26], we can

show that a packet counter is an optimal detector for Willie.
He counts the total number of packets S in the first phase for
all m flows, and sets a threshold U . If S < λT m − U , he
selects H1; otherwise, he selects H0.

We consider P(H0) = P(H1) = 0.5. The simulation
parameters are λ = 7.36 packets/second, min

i
{μi − λ′

i } =
20 packets/second, C = 7.36 nats/second (see (8)), T =
3600 × 11 seconds, ζ = 0.01, ε = 0.1, m = 10 (see (15)),
U ∈ [0.07, 100]√λmT ≈ [80, 120000]. Alice reduces the rate
of each packet stream from λ to λ−rε

√
2λ/mT1, and we plot

receiver operating characteristic (ROC) curves for Willie for
r ∈ [0.1, 9] (see Fig. 5). Note that the x-axis and y-axis of
this figure are Willie’s probability of false-alarm (PFA) and
true-detection (1-PMD), respectively. The number of trials is
8000. According to Theorem 1, r = 1 corresponds to the case
which yields covertness, as verified by the ROC curve. Note
that large values for r , which corresponds to more slow down
of the packets by Alice in the first phase, lead to detection by
Willie with high probability.

Next, we discuss why these results apply to other scenarios.
Note that Willie’s detection defers across scenarios since he
observes a different number of flows. However, in all scenarios
Willie’s optimal detector is a packet counter. Since all of the
links are governed by independent Poisson processes and the
sum of independent Poisson random variables (with distinct
parameters) is another Poisson random variable, Willie’s detec-
tion problem differs only slightly.

B. Probability That Alice Runs Out of Packets

Recall that in all scenarios Alice slightly slows down the
packet rate of each flow so as to buffer packets. She does this
to ensure that in the second phase, she does not run out of

Fig. 6. The probability that Alice runs out of packets for a single
link when, in the buffering phase, she reduces the packet rate from λ to
λ − r ′ε√2λ/(mT1), where 100 r ′ is the percentage of ideal rate reduction.

packets with high probability. We denoted the probability that
Alice runs out of packets by Pf1 , and recall we want to achieve
Pf1 < ζ .

We consider a single link and plot the curve for the
probability that Alice runs out of packets when she reduces
the rate from λ to λ − r ′ε

√
2λ/(mT1) (see Fig. 6), where

r ′ ∈ [0, 0.5] is variable. We term 100 r ′ the percentage of ideal
rate reduction. According to Theorem 1, r ′ = 1 corresponds
to the rate reduction that yields Pf1 < ζ . The simulation
parameters are λ = 20 packets/second, min

i
{μi − λ′

i } =
25 packets/second, C = 4.46 nats/second (see (8)), T =
3600 × 2 seconds, ζ = 0.1, ε = 0.1, m = 9 (see (15)).
The number of trials is 10, 000. As expected, larger values of
r ′ yields a smaller probability of failure for Alice. Although
only the value of m is tied to Scenario 1, this result applies
to all scenarios with minor modifications.

Note that the ideal reduced rate in the first phase
(λ − r ′ε

√
2λ/(mT1) with r ′ = 1) is expected to achieve

Pf ≤ ζ = 0.1. Although the simulation for r ′ ∈ [0.6, 1] has
not been done due to processing time limits, the Fig. 6 shows
that even with less rate reduction (r ′ = 0.5) and hence less
buffering, we achieve a much smaller probability of failure
(Pf1 ≤ ζ = 2 × 10−4). So, our buffering requirements are
conservative rate reduction in the first phase is conservative.
That leads to allocating a large portion of T to the first phase,
and a small portion to the second phase. The plot shows that
in practice we can reduce the rate in the first phase less, and
allocate a smaller portion of T to the first phase.

C. Bob’s Decoding Error Probability

We consider a single link and plot Bob’s error proba-
bility (Pf2 ), i.e., the probability that Bob extracts a wrong
fingerprint from the link. Although the simulation results
presented here are according to the number of links m derived
from Scenario 1, this result also applies to all scenarios
with minor modifications. The simulation parameters are
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Fig. 7. The probability that Bob extracts a wrong fingerprint from a flow.
Bob looks at the packet timings of the flow and extracts the fingerprint from
it according to the codebook shared with Alice. The size of the codebook is
r ′′ × m, where m is the ideal codebook size according to Theorem 1.

λ = 5.485 packets/second, min
i

{μi − λ′
i } = 5.5 pack-

ets/second, C = 0.015 nats/second (see (8)), T = 3600 ×
40 seconds, ζ = 0.15, ε = 0.1, m = 13 (see (15)). The
number of trials is 2, 000.

The maximum allowable size of the codebook is m = 13.
For simulation, we let the size of the codebook be 
r ′′ × m�,
where r ′′ ∈ [0.002, 1.2] (see Fig. 7). The x-axis is r ′′.
According to Theorem 1, r ′′ = 1 corresponds to the ideal
codebook size that results arbitrarily small error probability for
Bob. Note that the results of Theorem 1 is based on Shannon’s
random coding which relies on large T . If we consider larger
values for T , we expect to see small error probabilities for
Bob’s decoding when the size of the codebook is ideal or
smaller than that r ′′ ≤ 1. Currently, because of processing
time limits, we observe Pf2 = 0.02 when r ′′ = 1.

Although T = 3600 × 40 seconds, the length of the second
phase is only 173 seconds. In other words, if Alice and Bob
are given 40 hours, they only use about 3 minutes of that time
to embed and extract the fingerprints, and Alice uses the rest
of the time to buffer packets in the first phase to ensure her
fingerprinting will be successful. As stated in Section VII-B,
this is because the parameters for packet buffering are con-
servative. Improving the parameters and reducing the amount
of time needed for buffering lies beyond the scope of this
work since our primary goal is to establish the fundamental
limits. Noting that using only 3 minutes for embedding and
extracting the fingerprints results in a decoding probability of
error Pf2 = 0.02, we can state that our current scheme is
efficient in this way.

D. Robustness Against Processing Time of Queues

Bob’s detector relies on the fact that the queues are M/M/1
which implies the processing times of the queues are i.i.d
exponential random variables. Here, we consider M/G/1

Fig. 8. The probability that Bob extracts a wrong fingerprint from a flow
when the service times of the queue are i.i.d. instantiations of exponential
distribution and Weibull distribution with shape parameters 2, 3, 4. Bob looks
at the packet timings of the flow and extracts the fingerprint from it according
to the codebook shared with Alice. The size of the codebook is r ′′ ×m, where
m is the ideal codebook size when the processing times are instantiations of
an exponential random variable, according to Theorem 1.

queues, whose processing times are i.i.d. samples of non-
exponential random variables, and plot Bob’s decoding error
probability. We let the processing times of the queue be i.i.d.
instantiations of a Weibull distribution with shape parameters
1, 2, 3, 4, with the same processing rate, mu. Note that the
shape parameters 1 corresponds to an exponential random
variable.

Similar to Section VII-C, we consider a single link and
plot Bob’s error probability (Pf2 ), i.e., the probability that
Bob extracts a wrong fingerprint from the link (see Fig. 8).
Although the simulation results presented here are according
to the number of links m derived from Scenario 1, this result
also applies to all scenarios with minor modifications. The
simulation parameters are the same as those of Section VII-C.
According to Fig. 8, the change of distribution does not yield
a major change in Bob’s error probability, and thus Bob’s
decoder is robust against this change, i.d., if the distribution of
the processing times of the queue changes from Weibull with
shape parameter 1 to Weibull with shape parameter 2, 3, 4.

VIII. DISCUSSION

A. Source of the Gain in Scenarios 2, 4, and 6

Comparing the results of Scenarios 1, 3, and 5 (Alice
fingerprints all flows she observes) with those of Scenarios 2,
4, and 6 (Alice fingerprints a subset of flows she observes),
we notice a large gain for the number of flows that can be
fingerprinted when Alice fingerprints the flows with a small
probability. Intuitively, if H1 is true, in Scenarios 1, 3, and 5,
Willie is certain that there is only one possibility: all flows are
slowed down by Alice in the first phase. However, if H1 is
true, the number of possible sets of flows that might have
been slowed down by Alice in the first phase is

(m
M

)
for
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Scenarios 2 and 4, and 2M for Scenario 6, where sets whose
cardinality is about Mq are more probable. Since a small
portion of the flows is fingerprinted in Scenarios 2, 4, and 6,
Willie needs to investigate a large number of flows to look
for the decreasing of flow rates of a relatively (very) small
random subset of those flows. This makes invisibility much
easier to achieve and leads to the significant gains observed.

B. Alternative Characterization of m With Respect to M for
Scenarios 2,4, and 6

Consider Scenario 2 (Theorem 2). An alternative way to
show the relation between the maximum number of flows m
that could be traced from a set of flows of size M observed
by Alice is:

• If there exists a constant ξ < C such that M = O(eT ξ ),
then m = O(

√
M).

• If for all ξ < C , M = ω(eξT ), then m = O(eT C5
√

M),
for all C5 ∈ (0, C).

This applies to Scenario 4 (Theorem 3.2) and Scenario 6
(Theorem 4.2), replacing C with C ′ and C ′′, respectively.

C. Alice’s Knowledge About Effective Service
Times of the Queues

We presented results assuming Alice knows the effective
service rates of the queues, i.e., μi − λ′

i for all 1 ≤ i ≤ M .
We can show that if Alice does not know the effective service
rates, but she knows a positive lower bound on each of them,
then we achieve the same big-O results for the number of
flows that Alice and Bob can trace. Furthermore, if she does
not know the lower bounds, our big-O results achieved for
Scenarios 1, 3, and 5 will change to Little-o results.

D. Sharing the Fingerprinting Codebook

The use of a secret pre-shared key has been largely
addressed in security and cryptography [33], [34]. In practice,
the distribution of secret keys can be done by face-to-face
meeting, use of a trusted courier, or sending the key through
an existing encryption channel. In many scenarios a secure
low throughput channel is available that the parties can use to
share the key. Also, Diffie-Hellman key exchange (DH) can
be used for sharing such a key [35] over a public channel.

E. Delay Performance

Our fingerprinting scheme requires that Alice first buffers
packets, which increases the end-to-end delay of the network.
We can show that the average packet delay in Scenarios 1, 3,
and 5 is O(

√
log T ), and in Scenarios 2, 4, and 6 is O(

√
T ).

We have shown in the reliability analyses that the packet
delay does not impact Bob’s decoding, and he can extract
fingerprints with arbitrarily small error probability. This is true
because Bob extracts the fingerprints from inter-packet delays.
Furthermore, it does not help Willie’s detection. In other
words, in the invisibility analysis we have shown that although
packets experience delays, Willie cannot detect Alice and
Bob’s fingerprinting. This is true because Willie does not have

access to the original packet timings; rather, he only knows the
statistics of the packet timings which change only slightly and
are undetectable to him. Consider the users of the network.
Although this delay is not tolerable in applications such as
voice over IP, there are many applications such as file transfer
that allow for this.

F. Unwinding Packets in Alice’s Buffer

Note that Alice’s fingerprinting requires that she first buffers
packets. We can show that Alice will have O(

√
T ) packets in

her buffer after the second phase ends at t = T . To unwind
the packets, after t = T , Alice relays all the flows she receives
at the rate she receives them, and insert packets from her
buffer according to a Poisson process of rate �. Similar to
the arguments where we showed that the change of rate from
λ − � is undetectable to Willie, we show that the change of
rate from λ to λ+� is undetectable to Willie, and thus Alice’s
unwinding is invisible. Similar analyses has been addressed in
our previous works [26], [27].

IX. FUTURE WORK

The future work consists of alternative network models.
We will consider the cases where 1) packets drop; 2) pack-
ets are duplicated; 3) order of packets change; 4) packets
are fragmented; and 5) flows are re-packetized. In addition,
we will apply the results of [27] to extend our construction
and analysis to G/M/1 queues, and we will apply the results
of [36] to extend the model for each link between Alice and
Bob from an M/M/1 queue to M/M/1 queues in tandem.
Furthermore, we will employ [37, Corollary 3.3] to relax the
condition of independent interference for queues on each link
from Alice to Bob. Moreover, we will extend our model to a
feedforward multiclass product form network [38] containing
parallel links from Alice to Bob where each link consists of
multiple M/M/1 queues in tandem shared by a flow between
Alice and Bob and interfering flows.

X. CONCLUSION

We have presented the construction and analysis for invis-
ible fingerprinting of flows to infer the connections between
input and output links of a network that is modeled as M
independent parallel M/M/1 queues with background traffic.
In a setting where flow packet timings are governed by Poisson
processes, and the flows visit Alice, Willie, the network, and
Bob respectively, we have presented a construction where
Alice fingerprints flows in a time interval of length T . She
first generates a codebook where each codeword is a flow
identifier which indicates a sequence of inter-packet delays,
and shares it only with Bob. Then, she manipulates packet
timing of each flow according to a unique fingerprint from
the codebook. If flow rates are equal, Bob observes only flows
with fingerprints, and Alice fingerprints all input flows, Alice
and Bob can invisibly trace O(T/ log T ) flows. But, if she
fingerprints a subset of the flows of size m, Alice and Bob can
invisibly trace m = o(min{√M, eT C1}) flows, where C1 > 0
is defined in Section IV, with more accurate characterizations
of m with respect to M presented in (16) and (26). Similar
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results hold for arbitrary flow rates and the case where Bob
observes flows with and without fingerprints.

APPENDIX

A. Applicability of Covertness Metric When P(H0) �= P(H1)

Definition 1 implies that when P(H0) = P(H1) = 1/2,
Alice can make Willie’s detector operate as close as desired
to a detector that disregards Willie’s observation, e.g., tosses
a fair coin to decide whether Alice is fingerprinting.

For P(H0) �= P(H1), if Alice’s scheme satisfies the invis-
ibility metric in Definition 1, she can also make Willie’s
detector operate as close as desired to a detector that disregards
Willie’s observations, as follow. Recall that P

(w)
e = PFA+PMD

2
is Willie’s error probability when prior probabilities are equal,
P(H0) = P(H1) = 0.5. Denote by P

′(w)
e Willie’s error

probability when prior probabilities are not equal. Then:
P

′(w)
e = (1 − P(H1))PFA + P(H1)PMD,

≥ 2 min (P(H1), 1 − P(H1))
PFA + PMD

2
,

≥ 2 min (P(H1), 1 − P(H1))P
(w)
e , (44)

By Definition 1, if Alice’s fingerprinting is invisible, then for
large enough T she can achieve P

(w)
e > 1

2 − ε, for all ε > 0.
Hence, (44) yields:

P
′(w)
e ≥ min (P(H1), 1 − P(H1))(1 − 2ε),

≥ min (P(H1), 1 − P(H1)) − ε′, (45)

where ε′ = 2ε min (P(H1), 1 − P(H1)). Consider a detector
that disregards Willie’s observations: if P(H0) > 0.5, Willie
always decides that Alice is fingerprinting; otherwise, Willie
decides that she is not. Using this detector, Willie achieves
P

′(w)
e = min(P(H1), 1 − P(H1)). From (45), Alice can make

Willie’s detector operate as close as desired to this detector.

B. Proof of (3)

Denote by P0 the pdf for Willie’s observations in the first
phase under the null hypothesis H0 (Alice is not fingerprint-
ing), and by P1 the joint pdf for corresponding observations
under the hypothesis H1 (Alice is fingerprinting) in the first
phase. Note that under H1, Alice in the first phase slows down
the flow fi from rate λi to λi − �i , for 1 ≤ i ≤ m. Since
the number of observed packets for Poisson processes is a
sufficient statistic for hypothesis testing [26],

P0 =
m∏

i=1

Pλi (ni ),

P1 =
m∏

i=1

Pλi−�i (ni ),

where Pλ(n) is the probability mass function (pmf) of the
number of packets in time T1 for a flow whose packet timings
are governed by a Poisson process with rate λ, and T1 is the
length of the first phase. Observe

D(Pλi−�i (ni )||Pλi (ni ))

= �i T1 − (λi − �i )T1 log
λi

λi − �i
≤ T1�

2
i

2(λi − �i )
, (46)

where the last steps follows from the inequality ln(1 + x) ≥
x − x2/2 for x ≥ 0. Thus,

D(P1||P0) =
m∑

i=1

D(Pλi−�i (ni )||Pλi (ni )) ≤
m∑

i=1

T1�
2
i

2(λi − �i )
.

Let �i = ε
√

2λi
mT1

, where ε > 0. Therefore, D(P1||P0) ≤
ε2

m

∑m
i=1

λi
λi−√

2λi/T1
. For large enough T1, λi

λi−√
2λi/T1

≤ 2,

and thus D(P1||P0) ≤ 2ε2 as T1 → ∞. Combining with (22),
P

(w)
e ≥ 1

2 − ε
2 ≥ 1

2 −ε. Consequently, the first phase is invisible.

C. Proof of (14)

Consider the following fact:
Fact 1: For x, y > 0, if x < y/W (y), then x log x < y.
Proof: Assume x ′ = y/W (y). First, we show that

x ′ log x ′ = y. From the definition of the Lambert-W function,
W (y)eW (y) = y. Therefore, W (y) = log y

W (y) . Consequently,

x ′ log x ′ = y

W (y)
log

y

W (y)
= y

W (y)
W (y) = y. (47)

Since x ′ = y/W (y), x < y/W (y) implies that
x < x ′. Because x log x is an increasing function of x ,
x log x < x ′ log x ′ = y, and the proof is complete. �

Next, for both cases m ≥ 1 + mα and m < 1 + mα we
show that T C > (1+mα) log m, which implies (14). Consider
m ≥ 1 + mα. Note that (15) implies m < T C

W (T C) . Therefore,
Fact 1 yields:

T C > m log m.

Since m ≥ 1 + mα,

T C > m log m > (1 + mα) log m.

Now, consider m < 1 + mα. Note that (15) implies that
m < α−1

(
T C

W (T C) − 1
)

, which implies 1 + mα < T C
W (T C)

Hence, Fact 1 yields

T C > (1 + mα) log (1 + mα) ≥ (1 + mα) log m,

where the last inequality follows from m < 1 + mα.
Consequently, (15) satisfies (14).

D. Proof of (23)

Observe:
D(P1||P0)

(a)= MD (pPλ−�(n) + (1 − p)Pλ(n)||Pλ(n)) ,

(b)= ME1

[
ln

(
pPλ−�(n) + (1 − p)Pλ(n)

Pλ(n)

)]
,

= ME1

[
ln

(
pe�T1

(
λ − �

λ

)n

+ (1 − p)

)]
,

(c)≤ MpE1

[
e�T1

(
λ − �

λ

)n]
− Mp,

(d)= Mp2(e�2T1/λ − 1)
(e)= ε2/2. (48)

where (a) follows from the chain rule for relative entropy
[39, Eq. (2.67)], E1[·] denotes expected value with respect to
the pdf (pPλ−�(ni ) + (1 − p)Pλ(ni )), (b) follows from the
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definition of the Kullback-Leibler divergence, (c) is true since
ln(1 + x) ≤ x , (d) is true since

E1

[(
λ − �

λ

)n]
= e−�T1

(
pe�2T1/λ + (1 − p)

)
,

and (e) follows from substituting the values of �, p, and T1
given in (20), (21), and (17) respectively.

E. Proof of (24)

The first difference is in the number of packets that Alice
can buffer from each flow in the first phase. Here, since
Alice slows down each flow from rate λ to λ − �, where �
is given in (20), the probability that Alice can buffer more
than �T1/2 packets in the second phase tends to one as
T → ∞. Therefore, letting t = T1 and k = �T1/2 =√

λT1 ln
(

1 + ε2 M
2m2

)
/4 in (10) yields:

lim
T →∞ Pf1 ≤ 1 − lim

T →∞ erf

⎛
⎜⎜⎝
√√√√T1 ln

(
1 + ε2 M

2m2

)
8T2

⎞
⎟⎟⎠ . (49)

The second difference in the analysis of Pf1 is due to dif-
ferences in the expressions for T1 and T2. By (17) and (18),
T1/T2 = α′/ ln(1 + ε2 M

2 m2 ). Therefore, (49) yields:

lim
T →∞ Pf1 ≤ 1 − erf

(√
α′
8

)
= 1 − erf

(
ε

√
α

8

)
, (50)

where the last step is true since α′ = ε2α. By (12),

F. Proof of (26)

If M = O(1), by (16), the left hand side (LHS) of (26) is
m = M = O(1). Now, consider the right hand side (RHS)
of (26). Since m = O(1), there exists ρ such that for large

enough T , m ≤ ρ. Consequently, the RHS of (26) is �(e
T C

1+ρ′ ),
where ρ′ = α′/ ln(1 + ε2

2ρ ). Thus, (26) is satisfied.

If M = ω(1) and M = O(e2 T C), m = o(min
√

M, eT C1),
where C1 ∈ (0, C). Thus, the LHS of (26) is o(eT C1).
To show (26) is satisfied, it suffices to show that there exists
a constant C ′

1 ∈ (C1, C) such that makes the RHS of (26)
�(eT C ′

1), which is true since

exp

(
T C

1 + α′/ ln(1 + ε2m
2M2 )

)
≥ e

T C
(

1−α′/ ln(1+ ε2M
2m2 )

)
(51)

provided that 1/(1 + x) ≥ 1 − x for all x > 0. Note that
m = o(min

√
M, eT C1) implies that m ∈ o(

√
M), and thus

α′/ ln(1 + ε2 M
2 m2 ) in the RHS of (51) gets as small as desired.

If M = ω(e2 T C ), m = 	(eT C2) for any C2 ∈ (0, C),
and thus the LHS of (26) is 	(eT C2). Now, consider the
RHS of (26). Since m = 	(eT C2) and M = ω(e2 T C),
m = o(

√
M), and thus α′/ ln(1 + ε2 M

2 m2 ) in the RHS of (51)
gets as small as desired. Consequently, there exists a constant
C ′

2 ∈ (C2, C) such that the RHS of (26) is �(eT C ′
2).

Hence, (26) is satisfied.
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